论文标题
Brill-Noether Generth K3表面,具有最小度椭圆形铅笔数量
Brill-Noether general K3 surfaces with the maximal number of elliptic pencils of minimal degree
论文作者
论文摘要
我们明确地构建了Brill - 一般$ K3 $属的表面$ 4,6 $和8 $,具有最大数量的椭圆铅笔,分别为$ 3、4 $和5美元,并研究其Moduli Space和Moduli Maps to Moduli曲线的Moduli Maps。作为应用程序,我们证明了Brill的存在 - 一般$ k3 $ $ k3 $ $ 4 $和$ 6 $,而没有稳定的lazarsfeld- mukai捆绑包至少$ C_2 $。
We explicitly construct Brill--Noether general $K3$ surfaces of genus $4,6$ and $8$ having the maximal number of elliptic pencils of degrees $3, 4$ and $5$, respectively, and study their moduli spaces and moduli maps to the moduli space of curves. As an application we prove the existence of Brill--Noether general $K3$ surfaces of genus $4$ and $6$ without stable Lazarsfeld--Mukai bundles of minimal $c_2$.