论文标题
谎言组的掩护多数度
The multi-degree of coverings on Lie groups
论文作者
论文摘要
我们将简单谎言组的每个覆盖地图关联到一个整数序列,称为覆盖的多度。扩展舒伯特微积分以评估不变性;并将结果应用于解决Wess-Zumino-Ponten模型和拓扑规程的研究引起的两个出色的拓扑问题。我们方法中的主要工具是Grothendieck于1958年引入的Lie Groups的Chow环。
We associate to each covering map of simple Lie groups a sequence of integers, called the multi-degree of the covering; extend Schubert calculus to evaluate the invariant; and apply the results to solve two outstanding topological problems arising from the studies of the Wess-Zumino-Witten models and the topological Gauge theories. The main tool in our approach is the Chow rings of Lie groups, introduced by Grothendieck in 1958.