论文标题

渐近自主动力学系统的压缩:理论,应用和不变流形

Compactification for Asymptotically Autonomous Dynamical Systems: Theory, Applications and Invariant Manifolds

论文作者

Wieczorek, Sebastian, Xie, Chun, Jones, Chris K. R. T.

论文摘要

我们开发了一个一般的压缩框架,以促进非自主术语渐近衰减的非线性非自治odes的分析。该策略是压实问题:相位空间用有界但开放的维度增强,然后通过在一个或两端延伸,通过粘贴流动不变子空间,这些子空间带有来自Infinity的极限系统的自动动力学。我们得出压缩系统在扩展相空间上可以连续区分的最弱衰减条件。这使我们能够使用均衡和其他紧凑型不变的限制集合从Infinity分析动力学系统理论精神中的原始非自主问题。具体而言,我们证明,当嵌入在扩展相位空间中时,感兴趣的解决方案包含在极限系统的唯一不变歧管中。在一般情况下,独特性具有,即使紧凑型产生了中心方向,并且歧管成为中心或中心稳定的歧管。各种各样的问题,包括回调吸引子,速率诱导的临界过渡(R-Tipping)和非线性波解决方案,自然而然地适合我们的框架。

We develop a general compactification framework to facilitate analysis of nonlinear nonautonomous ODEs where nonautonomous terms decay asymptotically. The strategy is to compactify the problem: the phase space is augmented with a bounded but open dimension and then extended at one or both ends by gluing in flow-invariant subspaces that carry autonomous dynamics of the limit systems from infinity. We derive the weakest decay conditions possible for the compactified system to be continuously differentiable on the extended phase space. This enables us to use equilibria and other compact invariant sets of the limit systems from infinity to analyse the original nonautonomous problem in the spirit of dynamical systems theory. Specifically, we prove that solutions of interest are contained in unique invariant manifolds of saddles for the limit systems when embedded in the extended phase space. The uniqueness holds in the general case, that is even if the compactification gives rise to a centre direction and the manifolds become centre or centre-stable manifolds. A wide range of problems including pullback attractors, rate-induced critical transitions (R-tipping) and nonlinear wave solutions fit naturally into our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源