论文标题
通过多个访问渠道进行沟通有效的联邦学习
Communication Efficient Federated Learning over Multiple Access Channels
论文作者
论文摘要
在这项工作中,我们研究了联合学习(FL)的问题,其中分布式用户的目的是在参数服务器(PS)的帮助下共同训练机器学习模型。在FL的每次迭代中,用户都计算本地梯度,然后将量化梯度传输以进行PS的随后聚合和模型更新。 FL的挑战之一是由于FL的迭代性质和大型模型大小而导致的通信开销。减轻佛罗里达州通信瓶颈的最新方向是让用户通过多个访问渠道(MAC)同时进行交流,从而可以更好地利用通信资源。 在本文中,我们考虑了通过Mac学习FL的问题。特别是,我们专注于在Mac上设计数字梯度传输方案的设计,在该设计中,首先对每个用户的梯度进行了量化,然后通过MAC传输以在PS上单独解码。在MAC上设计数字FL计划时,有新的机会根据a)每个用户的梯度信息,以及b)基础渠道条件。我们提出了一个随机梯度量化方案,其中量化参数是根据MAC的容量区域进行了优化的。我们表明,此类频道意识到FL的量化均超过统一的量化,尤其是当用户经历不同的渠道条件以及具有不同信息水平的梯度时。
In this work, we study the problem of federated learning (FL), where distributed users aim to jointly train a machine learning model with the help of a parameter server (PS). In each iteration of FL, users compute local gradients, followed by transmission of the quantized gradients for subsequent aggregation and model updates at PS. One of the challenges of FL is that of communication overhead due to FL's iterative nature and large model sizes. One recent direction to alleviate communication bottleneck in FL is to let users communicate simultaneously over a multiple access channel (MAC), possibly making better use of the communication resources. In this paper, we consider the problem of FL learning over a MAC. In particular, we focus on the design of digital gradient transmission schemes over a MAC, where gradients at each user are first quantized, and then transmitted over a MAC to be decoded individually at the PS. When designing digital FL schemes over MACs, there are new opportunities to assign different amount of resources (such as rate or bandwidth) to different users based on a) the informativeness of the gradients at each user, and b) the underlying channel conditions. We propose a stochastic gradient quantization scheme, where the quantization parameters are optimized based on the capacity region of the MAC. We show that such channel aware quantization for FL outperforms uniform quantization, particularly when users experience different channel conditions, and when have gradients with varying levels of informativeness.