论文标题
使用凸时空先验和深度自动编码器的抗压MRI定量
Compressive MRI quantification using convex spatiotemporal priors and deep auto-encoders
论文作者
论文摘要
我们提出了一条无字典的管道,用于多参数定量MRI图像计算。我们的方法基于压缩感测重建和深度学习的定量推断有两个阶段。重建阶段是凸的,并在加速的迭代收缩算法中融合了有效的时空正规化。这可以最大程度地减少从积极的短扫描时间中的下采样(混叠)伪像。学到的定量推理阶段纯粹是在物理模拟(BLOCH方程)上训练的,这些模拟(BLOCH方程)可灵活地生产丰富的训练样品。我们提出了一个具有剩余块的深层自动编码器网络,以通过多尺度分段仿射近似值嵌入Bloch歧管投影,并替换不可估计的词典匹配基线。在许多数据集上进行了测试,我们证明了提出的方案从新颖和积极地采样的2D/3D定量MRI获取方案中恢复准确且一致的定量信息的有效性。
We propose a dictionary-matching-free pipeline for multi-parametric quantitative MRI image computing. Our approach has two stages based on compressed sensing reconstruction and deep learned quantitative inference. The reconstruction phase is convex and incorporates efficient spatiotemporal regularisations within an accelerated iterative shrinkage algorithm. This minimises the under-sampling (aliasing) artefacts from aggressively short scan times. The learned quantitative inference phase is purely trained on physical simulations (Bloch equations) that are flexible for producing rich training samples. We propose a deep and compact auto-encoder network with residual blocks in order to embed Bloch manifold projections through multiscale piecewise affine approximations, and to replace the nonscalable dictionary-matching baseline. Tested on a number of datasets we demonstrate effectiveness of the proposed scheme for recovering accurate and consistent quantitative information from novel and aggressively subsampled 2D/3D quantitative MRI acquisition protocols.