论文标题

使用区块链保存AI市场的所有权

Ownership preserving AI Market Places using Blockchain

论文作者

Somy, Nishant Baranwal, Kannan, Kalapriya, Arya, Vijay, Hans, Sandeep, Singh, Abhishek, Lohia, Pranay, Mehta, Sameep

论文摘要

我们提出了一个基于区块链的系统,该系统允许数据所有者,云供应商和AI开发人员在无信任的AI市场中协作训练机器学习模型。数据是一个高度有价值的数字资产,也是获得业务见解的核心。我们的系统使数据所有者能够保留其数据的所有权和隐私,同时仍允许AI开发人员利用数据进行培训。同样,人工智能开发人员可以在不失去训练有素的模型的所有权或隐私的情况下利用云供应商的计算资源。我们的系统协议旨在激励所有三个实体 - 数据所有者,云供应商和AI开发人员在分布式分类帐中真实地记录他们的动作,以便区块链系统提供可验证的证据证明不当行为和争议解决。我们的系统是在HyperLeDger结构上实现的,可以为不保证数据或模型隐私的集中AI系统提供可行的替代方案。我们提出了实验性能结果,该结果证明了其在不同网络配置下的交易的潜伏期和吞吐量,在不同的网络配置下,区块链上的同行可能会分布在不同的数据中心和地理位置上。我们的结果表明,所提出的解决方案可以很好地扩展到大量数据和模型所有者,并且可以在12对非优化的区块链网络上每秒训练多达70个型号,在24个对等网络中每秒大约30款型号。

We present a blockchain based system that allows data owners, cloud vendors, and AI developers to collaboratively train machine learning models in a trustless AI marketplace. Data is a highly valued digital asset and central to deriving business insights. Our system enables data owners to retain ownership and privacy of their data, while still allowing AI developers to leverage the data for training. Similarly, AI developers can utilize compute resources from cloud vendors without loosing ownership or privacy of their trained models. Our system protocols are set up to incentivize all three entities - data owners, cloud vendors, and AI developers to truthfully record their actions on the distributed ledger, so that the blockchain system provides verifiable evidence of wrongdoing and dispute resolution. Our system is implemented on the Hyperledger Fabric and can provide a viable alternative to centralized AI systems that do not guarantee data or model privacy. We present experimental performance results that demonstrate the latency and throughput of its transactions under different network configurations where peers on the blockchain may be spread across different datacenters and geographies. Our results indicate that the proposed solution scales well to large number of data and model owners and can train up to 70 models per second on a 12-peer non optimized blockchain network and roughly 30 models per second in a 24 peer network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源