论文标题
单向通道的容量误差函数的范围,无噪声反馈
Bounds for the capacity error function for unidirectional channels with noiseless feedback
论文作者
论文摘要
在诸如光纤通信之类的数字系统中,类型$ 1 \至0 $和$ 0 \至1 $的错误概率之间的比率很大。实际上,人们可以假设只能发生一种错误。这些错误是不对称的。单向错误与不对称类型的错误不同。在这里,$ 1 \至0 $和$ 0 \至1 $类型的错误是可能的,但是在任何提交的库德沃德中,所有错误均为相同的类型。这可以概括为$ Q $ - ARY CASE。我们考虑具有反馈的$ Q $ - ARY单向渠道,并为容量误差函数提供界限。事实证明,界限取决于字母$ q $的均衡。此外,我们表明,对于反馈,二进制不对称通道的容量误差函数与对称通道不同。这与没有反馈的函数的行为形成鲜明对比。
In digital systems such as fiber optical communications, the ratio between probability of errors of type $1\to 0$ and $0 \to 1$ can be large. Practically, one can assume that only one type of error can occur. These errors arecalled asymmetric. Unidirectional errors differ from asymmetric type of errors; here both $1 \to 0$ and $0 \to 1$ type of errors are possible, but in any submittedcodeword all the errors are of the same type. This can be generalized for the $q$-ary case. We consider $q$-ary unidirectional channels with feedback and give bounds for the capacity error function. It turns out that the bounds depend on the parity of the alphabet $q$. Furthermore, we show that for feedback, the capacity error function for the binary asymmetric channel is different from the symmetric channel. This is in contrast to the behavior of the function without feedback.