论文标题
浮雕多翼半金属的热电传输特性
Thermo-electric transport properties of Floquet multi-Weyl Semimetals
论文作者
论文摘要
我们讨论了高频限制以I型I型和II类型多涡元半仪(MWSM)的循环极化光(振幅$ A_0 $和频率$ω$)驱动的热电动传输特性。考虑到低能模型,我们采用Floquet-kubo形式主义来计算两种MWSM的热厅和NERNST电导率。我们表明,任意整数单极电荷分散的各向异性性质$ n> 1 $在确定有效的费米表面行为方面起着重要作用;有趣的是,除了对Floquet Single WSM所观察到的动量独立贡献外,还可以观察到Floquet MWSM中的动量依赖性校正。除了对Weyl节点位置$ \ pm q \ to \ pm q-a_0^{2n}/ω$的非平地调整外,我们的研究表明,动量独立项会导致电导率张量的领先顺序贡献。这具有$ n $ times单WSMS结果的形式,具有有效的化学势$μ\至μ-a_0^{2n}/ω$。另一方面,动量依赖性校正导致子领先订单项,该订单项是$μ$的代数函数,并且以$ n> 1 $的形式出现。值得注意的是,这种分析进一步使我们能够将I型MWSM与II型类型对应区分开。对于II型MWSM,我们发现$ n \ geq 2 $的传输系数除了$ n = 1 $ wsms所示的弱对数依赖性外,对动量截止的代数依赖性表现出对动量截止的依赖。我们证明了I型和II MWSM之间的运输系数的变化和定性差异,这是外部驾驶参数$ω$的函数。
We discuss the circularly polarized light (of amplitude $A_0$ and frequency $ω$) driven thermo-electric transport properties of type-I and type-II multi-Weyl semimetals (mWSMs) in the high frequency limit. Considering the low energy model, we employ the Floquet-Kubo formalism to compute the thermal Hall and Nernst conductivities for both types of mWSMs. We show that the anisotropic nature of the dispersion for arbitrary integer monopole charge $n>1$ plays an important role in determining the effective Fermi surface behavior; interestingly, one can observe momentum dependent corrections in Floquet mWSMs in addition to momentum independent contribution as observed for Floquet single WSMs. Apart from the non-trivial tuning of the Weyl node position $\pm Q \to \pm Q- A_0^{2n}/ω$, our study reveals that the momentum independent terms result in leading order contribution in the conductivity tensor. This has the form of $n$ times the single WSMs results with effective chemical potential $μ\to μ-A_0^{2n}/ω$. On the other hand, momentum dependent corrections lead to sub-leading order terms which are algebraic function of $μ$ and are present for $n>1$. Remarkably, this analysis further allows us to distinguish type-I mWSMs from their type-II counterparts. For type-II mWSMs, we find that the transport coefficients for $n\geq 2$ exhibit algebraic dependence on the momentum cutoff in addition to the weak logarithmic dependence as noticed for $n=1$ WSMs. We demonstrate the variation and qualitative differences of transport coefficients between type-I and type-II mWSM as a function of external driving parameter $ω$.