论文标题
等效单极优势与$α$非弹性交叉部分之间的对应关系,$^{24} $ mg
Correspondence between isoscalar monopole strengths and $α$ inelastic cross sections on $^{24}$Mg
论文作者
论文摘要
等镜单单极(IS0)过渡强度与$α$非弹性横截面之间的对应关系,$ b({\ rm is0})$ - $ - $(α,α')$对应,以$^{24} $ mg($ n} $ mg($α,α''$)的130和386 mev进行调查。我们采用微观耦合通道反应框架来将结构输入,对角线和过渡密度连接起来,以$^{24} $ mg使用反对称分子动力学获得的$^{24} $ mg与($α,α''$)横截面。我们的目的是阐明$ b({\ rm is0})$ - $(α,α')$对应关系受核失真的影响,对散射过程中核素核子有效相互作用的中等修饰和耦合 - 通道效应的影响。发现这些效果很重要,并且对$ b({\ rm is0})$ - $(α,α,α')$对应的解释与经常使用的长波长近似值(通常使用)是没有意义的。然而,$ b({\ rm is0})$ - $(α,α')$对应关系往往会保留,因为对基础状态与$ 0^+$兴奋状态之间的过渡密度有很大限制。发现该对应关系在386 MeV处,误差约为20%-30%,而严重染色为130 MEV,主要是由于强核失真。还发现,当考虑了与简单的$α$群集状态不同结构不同的$ 0^+$状态时,$ b({\ rm is0})$ - $ - $(α,α')$对应关系较小。有关$ 0^+$兴奋状态的$α$聚类的定量讨论,需要对结构和反应部分的显微镜描述。
The correspondence between the isoscalar monopole (IS0) transition strengths and $α$ inelastic cross sections, the $B({\rm IS0})$-$(α,α')$ correspondence, is investigated for $^{24}$Mg($α,α'$) at 130 and 386 MeV. We adopt a microscopic coupled-channel reaction framework to link structural inputs, diagonal and transition densities, for $^{24}$Mg obtained with antisymmetrized molecular dynamics to the ($α,α'$) cross sections. We aim at clarifying how the $B({\rm IS0})$-$(α,α')$ correspondence is affected by the nuclear distortion, the in-medium modification to the nucleon-nucleon effective interaction in the scattering process, and the coupled-channels effect. It is found that these effects are significant and the explanation of the $B({\rm IS0})$-$(α,α')$ correspondence in the plane wave limit with the long-wavelength approximation, which is often used, makes no sense. Nevertheless, the $B({\rm IS0})$-$(α,α')$ correspondence tends to remain because of a strong constraint on the transition densities between the ground state and the $0^+$ excited states. The correspondence is found to hold at 386 MeV with an error of about 20%-30%, while it is seriously stained at 130 MeV mainly by the strong nuclear distortion. It is also found that when a $0^+$ state that has a different structure from a simple $α$ cluster state is considered, the $B({\rm IS0})$-$(α,α')$ correspondence becomes less valid. For a quantitative discussion on the $α$ clustering in $0^+$ excited states of nuclei, a microscopic description of both the structure and reaction parts will be necessary.