论文标题
基于第一个原理的分支比计算5 $ \ boldsymbol {d} $,4 $ \ boldsymbol {d} $和3 $ \ boldsymbol {d} $ transition Metal Metal Systems
First-principles-based calculation of branching ratio for 5$\boldsymbol{d}$, 4$\boldsymbol{d}$, and 3$\boldsymbol{d}$ transition metal systems
论文作者
论文摘要
一种用于计算“分支比率”的新的第一原理计算方案已应用于各种$ 5D $,$ 4D $和$ 3D $过渡金属元件和化合物。最近建议的方法是基于一种假设原子核孔几乎与价电子相互作用的理论。虽然它提供了一种有效的方法来计算实验可测量的数量而不产生频谱本身,但应仔细检查其可靠性和适用性,尤其是针对光过渡金属系统。在这里,我们选择36种不同的材料,并将计算结果与实验数据进行比较。发现我们的计划很好地描述了5 $ d $和4 $ d $过渡金属系统,而对于3 $ d $材料,计算和实验之间的差异非常重要。这归因于忽略核心价相互作用的能量量表与核心$ p $轨道的自旋轨道耦合相当。
A new first-principles computation scheme to calculate `branching ratio' has been applied to various $5d$, $4d$, and $3d$ transition metal elements and compounds. This recently suggested method is based on a theory which assumes the atomic core hole interacting barely with valence electrons. While it provides an efficient way to calculate the experimentally measurable quantity without generating spectrum itself, its reliability and applicability should be carefully examined especially for the light transition metal systems. Here we select 36 different materials and compare the calculation results with experimental data. It is found that our scheme well describes 5$d$ and 4$d$ transition metal systems whereas, for 3$d$ materials, the difference between the calculation and experiment is quite significant. It is attributed to the neglect of core-valence interaction whose energy scale is comparable with the spin-orbit coupling of core $p$ orbitals.