论文标题
在产品歧管中使用非零的neumann边界数据的非参数平均曲率流的解决方案$ m^{n} \ times \ mathbb {r} $
Translating solutions of the nonparametric mean curvature flow with nonzero Neumann boundary data in product manifold $M^{n}\times\mathbb{R}$
论文作者
论文摘要
在本文中,我们可以证明存在将解决方案转换为非零诺伊曼边界数据的非参数平均曲率流,并在规定的产品歧管$ m^{n} \ times \ mathbb {r} $中,其中$ m^{n} $是$ n $ n $ n $ n $ n $ n $ n $ n $ n \ geq 2曲率和$ \ mathbb {r} $是欧几里得$ 1 $ - 空间。
In this paper, we can prove the existence of translating solutions to the nonparametric mean curvature flow with nonzero Neumann boundary data in a prescribed product manifold $M^{n}\times\mathbb{R}$, where $M^{n}$ is an $n$-dimensional ($n\geq2$) complete Riemannian manifold with nonnegative Ricci curvature, and $\mathbb{R}$ is the Euclidean $1$-space.