论文标题

在通勤环上的模块的歼灭 - 解码图中的统治数

Domination number in the annihilating-submodule graph of modules over commutative rings

论文作者

Ansari-Toroghy, Habibollah, Habibi, Shokoufeh

论文摘要

令$ m $为通勤环$ r $的模块。 $ m $的nihitating-submodule图,由$ ag(m)$表示,是一个简单的图表,在该图中,当存在一个非零的$ n $ a $ m $的$ n $ n $ of $ m $时,只有当时存在非零的subpopor $ k $ k $ k $ k $ k $ m $ m $ $ m $ $(n:m)(k:m)m $和两个不同的顶点$ n $和$ k $相邻,并且仅当$ nk =(0)$时。该图是消灭理想图的子模块版本,在某些条件下,是同构的,具有Zariski拓扑图$ g(τ_t)$的诱导子图(Zariski拓扑图)(Zariski拓扑图模块上的Zariski拓扑图形图上的通勤戒指,通勤,Algebra。在本文中,我们研究了$ ag(m)$的支配数,以及$ ag(m)$的图理论属性与模块$ m $的代数属性之间的一些连接。

Let $M$ be a module over a commutative ring $R$. The annihilating-submodule graph of $M$, denoted by $AG(M)$, is a simple graph in which a non-zero submodule $N$ of $M$ is a vertex if and only if there exists a non-zero proper submodule $K$ of $M$ such that $NK=(0)$, where $NK$, the product of $N$ and $K$, is denoted by $(N:M)(K:M)M$ and two distinct vertices $N$ and $K$ are adjacent if and only if $NK=(0)$. This graph is a submodule version of the annihilating-ideal graph and under some conditions, is isomorphic with an induced subgraph of the Zariski topology-graph $G(τ_T)$ which was introduced in (The Zariski topology-graph of modules over commutative rings, Comm. Algebra., 42 (2014), 3283--3296). In this paper, we study the domination number of $AG(M)$ and some connections between the graph-theoretic properties of $AG(M)$ and algebraic properties of module $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源