论文标题

带有大色数的HASSE图

Hasse diagrams with large chromatic number

论文作者

Suk, Andrew, Tomon, István

论文摘要

对于每个正整数$ n $,我们都会构建一个带有$ n $顶点和色度$ω(n^{1/4})$的HASSE图,这在先前已知的具有色数$θ(\ log log n)$的载体图的最佳结构上大大改善了。此外,如果我们还要求我们的HASSE图至少具有$ k \ geq 5 $,我们可以实现至少$ n^{\ frac {1} {2k-3} {2k-3}+o(1)} $的色数。 这些结果具有以下令人惊讶的几何后果。它们暗示存在$ n $ curves the Plane的$ \ Mathcal {C} $的存在,以使$ \ Mathcal {C} $的差异图$ g $是无三角形的(或具有高圆形),但是$ g $的色度为$ n $ n $ n $。同样,由于Pach,Tardos和Tóth,先前已知的最佳结构只有对数色数。

For every positive integer $n$, we construct a Hasse diagram with $n$ vertices and chromatic number $Ω(n^{1/4})$, which significantly improves on the previously known best constructions of Hasse diagrams having chromatic number $Θ(\log n)$. In addition, if we also require that our Hasse diagram has girth at least $k\geq 5$, we can achieve a chromatic number of at least $n^{\frac{1}{2k-3}+o(1)}$. These results have the following surprising geometric consequence. They imply the existence of a family $\mathcal{C}$ of $n$ curves in the plane such that the disjointness graph $G$ of $\mathcal{C}$ is triangle-free (or have high girth), but the chromatic number of $G$ is polynomial in $n$. Again, the previously known best construction, due to Pach, Tardos and Tóth, had only logarithmic chromatic number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源