论文标题

随机阻尼哈密顿系统的固定分布的估计速率与连续观察

Rate of Estimation for the Stationary Distribution of Stochastic Damping Hamiltonian Systems with Continuous Observations

论文作者

Delattre, Sylvain, Gloter, Arnaud, Yoshida, Nakahiro

论文摘要

我们研究了随机二维阻尼哈密顿系统$(z_t)_ {t \ in [0,t]} =(x_t,y_t,y_t,y_t)_ {t \ in [0,t]} $的固定分布的密度$π$的非参数估计问题。从$ [0,t] $上对采样路径的持续观察,我们研究了$π(x_0,y_0)$的估计速率为$ t \ to \ infty $。我们表明,基于内核的估计器可以实现(0,1/2)$的某些显式指数$ v \ $ t^{ - v} $。一个发现是估计速率取决于$π$的平滑度,并且与标准I.I.D. \ \设置中或二维非退化扩散过程中出现的速率完全不同。特别是,此速率也取决于$ y_0 $。此外,我们在$ l^2 $ - 风险上获得了最小的下限,以进行估计,其中相同的速率$ t^{ - v} $,最多$ \ log(t)$项。

We study the problem of the non-parametric estimation for the density $π$ of the stationary distribution of a stochastic two-dimensional damping Hamiltonian system $(Z_t)_{t\in[0,T]}=(X_t,Y_t)_{t \in [0,T]}$. From the continuous observation of the sampling path on $[0,T]$, we study the rate of estimation for $π(x_0,y_0)$ as $T \to \infty$. We show that kernel based estimators can achieve the rate $T^{-v}$ for some explicit exponent $v \in (0,1/2)$. One finding is that the rate of estimation depends on the smoothness of $π$ and is completely different with the rate appearing in the standard i.i.d.\ setting or in the case of two-dimensional non degenerate diffusion processes. Especially, this rate depends also on $y_0$. Moreover, we obtain a minimax lower bound on the $L^2$-risk for pointwise estimation, with the same rate $T^{-v}$, up to $\log(T)$ terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源