论文标题

基于Golub-kahan bidiagonalization的嵌套迭代求解器的马鞍点系统的平行解决方案

Parallel solution of saddle point systems with nested iterative solvers based on the Golub-Kahan Bidiagonalization

论文作者

Kruse, Carola, Sosonkina, Masha, Arioli, Mario, Tardieu, Nicolas, Ruede, Ulrich

论文摘要

我们介绍了一项针对具有2x2块结构的对称非定义线性系统的平行迭代溶液的Golub-Kahan Biidiagonalization的可伸缩性研究。该算法已在并行数值库PETSC中实现。由于可能需要嵌套的内部迭代策略,因此我们研究了内部求解器的不同选择,包括平行的稀疏直接和多族加速迭代方法。当应用于二维Poiseuille流动以及二维和三维Stokes测试问题时,我们显示了基于Golub-kahan bidiagonalization方法的强且弱的可伸缩性。

We present a scalability study of Golub-Kahan bidiagonalization for the parallel iterative solution of symmetric indefinite linear systems with a 2x2 block structure. The algorithms have been implemented within the parallel numerical library PETSc. Since a nested inner-outer iteration strategy may be necessary, we investigate different choices for the inner solvers, including parallel sparse direct and multigrid accelerated iterative methods. We show the strong and weak scalability of the Golub-Kahan bidiagonalization based iterative method when applied to a two-dimensional Poiseuille flow and to two- and three-dimensional Stokes test problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源