论文标题

Facebook广告监视器:Facebook上政治广告的独立审计系统

Facebook Ads Monitor: An Independent Auditing System for Political Ads on Facebook

论文作者

Silva, Márcio, de Oliveira, Lucas Santos, Andreou, Athanasios, de Melo, Pedro Olmo Vaz, Goga, Oana, Benevenuto, Fabrício

论文摘要

2016年美国总统大选的标志是在Facebook上滥用有针对性的广告。与2018年巴西大选发生同样虐待的风险时,我们设计并部署了一个独立的审计系统,以监视巴西Facebook上的政治广告。为此,我们首先调整了浏览器插件,以收集使用Facebook的志愿者时间表的广告。我们设法说服了2000多名志愿者来帮助我们的项目并安装我们的工具。然后,我们使用卷积神经网络(CNN)使用单词嵌入来检测政治Facebook广告。为了评估我们的方法,我们将10K广告的数据收集标记为政治或非政治性的数据,然后我们通过将其与经典监督的机器学习方法进行比较,对拟议方法进行深入评估。最后,我们部署了一个真正的系统,该系统显示了与政治相关的广告。我们注意到,并非我们发现的所有政治广告都出现在Facebook广告图书馆中,用于政治广告。我们的结果强调了执法机制对于宣布政治广告的重要性以及对独立审计平台的需求。

The 2016 United States presidential election was marked by the abuse of targeted advertising on Facebook. Concerned with the risk of the same kind of abuse to happen in the 2018 Brazilian elections, we designed and deployed an independent auditing system to monitor political ads on Facebook in Brazil. To do that we first adapted a browser plugin to gather ads from the timeline of volunteers using Facebook. We managed to convince more than 2000 volunteers to help our project and install our tool. Then, we use a Convolution Neural Network (CNN) to detect political Facebook ads using word embeddings. To evaluate our approach, we manually label a data collection of 10k ads as political or non-political and then we provide an in-depth evaluation of proposed approach for identifying political ads by comparing it with classic supervised machine learning methods. Finally, we deployed a real system that shows the ads identified as related to politics. We noticed that not all political ads we detected were present in the Facebook Ad Library for political ads. Our results emphasize the importance of enforcement mechanisms for declaring political ads and the need for independent auditing platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源