论文标题
辐射效率低下的黑洞积聚的结构
The Structure of Radiatively Inefficient Black Hole Accretion Flows
论文作者
论文摘要
我们运行了三个长时间的一般性相关性磁性水力学模拟,以辐射无效的积聚流向非旋转的黑洞。我们的目的是实现稳态行为到大半径,并了解所得的流量结构。具有绝热指数伽马= 4/3的模拟和小的初始交替磁场环的运行时间为440,000 gm/c^3,在半径内达到370 gm/c^2的流入平衡。较大的交替场环和伽马= 5/3的变化运行至220,000 gm/c^3,达到平衡至170 gm/c^2和440 gm/c^2。在流入平衡中,在半径上没有获得通用的自相似行为:伽玛= 5/3模拟显示径向密度曲线,功率定律指数范围从内部区域的-1到外部区域的-1,而其他区域的范围为-1/2,而其他范围为-1/2到-2。两个具有小场回路的模拟都达到了物质极地流入的状态,而有序的初始场则具有极地流出。但是,未结合的流出仅消除了在半径约300倍的级数统一统一因素上。我们的结果表明,辐射效率低下的积聚流动的动力学对从较大半径馈电的流动方式敏感,并且在不同的天体物理系统中可能有明显不同。适用于SGR A*的毫米图像在所有模拟中都是定性的(但不是定量的),由于多普勒的增强,其显着的不对称图像。
We run three long-timescale general-relativistic magnetohydrodynamic simulations of radiatively inefficient accretion flows onto non-rotating black holes. Our aim is to achieve steady-state behavior out to large radii and understand the resulting flow structure. A simulation with adiabatic index Gamma = 4/3 and small initial alternating poloidal magnetic field loops is run to a time of 440,000 GM/c^3, reaching inflow equilibrium inside a radius of 370 GM/c^2. Variations with larger alternating field loops and with Gamma = 5/3 are run to 220,000 GM/c^3, attaining equilibrium out to 170 GM/c^2 and 440 GM/c^2. There is no universal self-similar behavior obtained at radii in inflow equilibrium: the Gamma = 5/3 simulation shows a radial density profile with power law index ranging from -1 in the inner regions to -1/2 in the outer regions, while the others have a power-law slope ranging from -1/2 to close to -2. Both simulations with small field loops reach a state with polar inflow of matter, while the more ordered initial field has polar outflows. However, unbound outflows remove only a factor of order unity of the inflowing material over a factor of ~300 in radius. Our results suggest that the dynamics of radiatively inefficient accretion flows are sensitive to how the flow is fed from larger radii, and may differ appreciably in different astrophysical systems. Millimeter images appropriate for Sgr A* are qualitatively (but not quantitatively) similar in all simulations, with a prominent asymmetric image due to Doppler boosting.