论文标题

量子相干性和量子相变的分布

Distribution of quantum coherence and quantum phase transition in the Ising system

论文作者

Qin, Meng

论文摘要

量化给定系统的量子相干性不仅在量子信息科学中起着重要作用,而且还促进了我们对某些基本问题(例如量子相变的)的理解。常规的量子相干测量值,例如$ l_1 $相干性和相干性的相对熵,已被广泛用于研究量子相变(通常是基础依赖性的)。 Jensen Shannon Divergence最近的量子版本满足了一项良好连贯度量的所有要求。它不仅是指标,而且可以是基础独立的。在这里,基于量子重新归一化组方法,我们提出了分布量子相干性时两种类型系统的临界行为的分析。我们直接获得了两个量子块旋转系统的权衡关系,关键现象,奇异行为和缩放行为。此外,还详细研究了多部分系统中的一夫一妻制关系。这些新的结果扩大了结果,即量子相干性可以分解为各种贡献,并扩大了使用与基础独立量子相干性以反映量子关键现象的应用。

Quantifying of quantum coherence of a given system not only plays an important role in quantum information science but also promote our understanding on some basic problems, such as quantum phase transition. Conventional quantum coherence measurements, such as $l_1$ norm of coherence and relative entropy of coherence, has been widely used to study quantum phase transition, which usually are basis-dependent. The recent quantum version of the Jensen-Shannon divergence meet all the requirements of a good coherence measure. It is not only a metric but also can be basis-independent. Here, based on the quantum renormalization group method we propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence. We directly obtain the trade-off relation, critical phenomena, singular behavior, and scaling behavior for both quantum block spin system. Furthermore, the monogamy relation in the multipartite system is also studied in detail. These new result expand the result that quantum coherence can decompose into various contributions as well as enlarge the applications in using basis-independent quantum coherence to reflect quantum critical phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源