论文标题

美元

$\mathcal{P}_1$-covers over commutative rings

论文作者

Bazzoni, Silvana, Gros, Giovanna Le

论文摘要

在本文中,我们考虑$ \ MATHCAL {P} _1(r)投影尺寸模块的$,最多是一个通勤环$ r $,我们调查$ \ Mathcal {p} _1(r)$是封面。更确切地说,我们研究了Enochs对此类别的猜想,这是$ \ Mathcal {p} _1(r)$覆盖的问题一定意味着$ \ Mathcal {p} _1(r)$在直接限制下关闭。在交换性的半卫星环$ r $的情况下,我们肯定地回答了这个问题。这给出了一个cotorsion对$(\ Mathcal {p} _1(r),\ Mathcal {p} _1(r)^\ perp)$的示例,这不一定是有限类型的,因此$ \ nathcal {p} _1(p} _1(r)$满足Enochs的猜想。此外,我们描述了$ \ varinjlim \ natercal {p} _1(r)$ over(不必要的交换)环,这些戒指允许经典的商圈。

In this paper we consider the class $\mathcal{P}_1(R)$ of modules of projective dimension at most one over a commutative ring $R$ and we investigate when $\mathcal{P}_1(R)$ is a covering class. More precisely, we investigate Enochs' Conjecture for this class, that is the question of whether $\mathcal{P}_1(R)$ is covering necessarily implies that $\mathcal{P}_1(R)$ is closed under direct limits. We answer the question affirmatively in the case of a commutative semihereditary ring $R$. This gives an example of a cotorsion pair $(\mathcal{P}_1(R), \mathcal{P}_1(R)^\perp)$ which is not necessarily of finite type such that $\mathcal{P}_1(R)$ satisfies Enochs' Conjecture. Moreover, we describe the class $\varinjlim \mathcal{P}_1(R)$ over (not-necessarily commutative) rings which admit a classical ring of quotients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源