论文标题
双重$λ$ - 强制排行等法,通用模型和分类
Doubly $Λ$-commuting row isometries, universal models, and classification
论文作者
论文摘要
本文的目的是研究双重赔偿$λ$的k-tupers的结构,并从非承诺的多变量运算符理论的角度来看,它们产生的$ c^*$ - 代数。我们在此设置中获得了Wold分解,并使用它们对$ k $ tubly $λ$的$ k $ tuplass进行分类,以达到统一等效性。我们在此环境中介绍了一个通用模型,描述其不变子空间,并在$λ$ - polyballs上开发扩张理论。
The goal of the paper is to study the structure of the k-tuples of doubly $Λ$-commuting row isometries and the $C^*$-algebras they generate from the point of view of noncommutative multivariable operator theory. We obtain Wold decompositions, in this setting, and use them to classify the $k$-tuples of doubly $Λ$-commuting row isometries up to a unitary equivalence. We introduce a universal model in this setting, describe its invariant subspaces, and develop a dilation theory on $Λ$-polyballs.