论文标题

双重$λ$ - 强制排行等法,通用模型和分类

Doubly $Λ$-commuting row isometries, universal models, and classification

论文作者

Popescu, Gelu

论文摘要

本文的目的是研究双重赔偿$λ$的k-tupers的结构,并从非承诺的多变量运算符理论的角度来看,它们产生的$ c^*$ - 代数。我们在此设置中获得了Wold分解,并使用它们对$ k $ tubly $λ$的$ k $ tuplass进行分类,以达到统一等效性。我们在此环境中介绍了一个通用模型,描述其不变子空间,并在$λ$ - polyballs上开发扩张理论。

The goal of the paper is to study the structure of the k-tuples of doubly $Λ$-commuting row isometries and the $C^*$-algebras they generate from the point of view of noncommutative multivariable operator theory. We obtain Wold decompositions, in this setting, and use them to classify the $k$-tuples of doubly $Λ$-commuting row isometries up to a unitary equivalence. We introduce a universal model in this setting, describe its invariant subspaces, and develop a dilation theory on $Λ$-polyballs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源