论文标题
Creutz梯子中的扩展平面,纠缠和拓扑特性
Extended flat-bands, entanglement and topological properties in a Creutz ladder
论文作者
论文摘要
在这项工作中,我们通过考虑紧凑的局部状态(CLS)来研究扩展的平流creutz梯子的纠缠和拓扑特性。根据CLS图片,我们从传统的两个平面Creutz梯子中找到了一个多个平板延伸。简单的垂直链间耦合会导致一个四个完整的平板系统,并在Creutz梯子上创建添加$π$ -Flux模式。有趣的是,强耦合会诱导拓扑相变,其中CLS的分布被修改:将上和下型平板CLS配对。这种配对会导致CLS纠缠的破坏,从而导致消失的边缘模式(即,非平凡拓扑阶段的崩溃)。最后,我们研究了该扩展的平板系统中完全扁平带引起的定位动力学。
In this work, we study the entanglement and topological properties of an extended flat-band Creutz ladder by considering a compacted localized state (CLS). Based on the CLS picture, we find a multiple flat-band extension from the conventional two flat-band Creutz ladder. A simple vertical inter-chain coupling leads to a four complete flat-band system and creates an additive $π$-flux pattern on the Creutz ladder. Interestingly, the strong coupling induces a topological phase transition where the distribution of CLSs is modified: upper and lower flat-band CLSs are paired up. This pairing leads to the destruction of the CLS' entanglement and, hence, to a vanishing edge mode (i.e., the breakdown of non-trivial topological phase). Finally, we study the localization dynamics induced by the presence of complete flat bands in this extended flat-band system.