论文标题

有限的nilpotent组中两个元素的乘积顺序

The order of the product of two elements in finite nilpotent groups

论文作者

Bonciocat, C. M.

论文摘要

小组理论中的一个旧问题是描述元素在乘法下的行为方式。要概括一些经典的界限,以$ \ mathrm o(ab)$ a,两个元素的$ a,b $,一个有限的亚伯利亚组中的b $ to to nocuncutative案例,我们将$ \ mathrm o(ab)$替换为相互订单$ \ mathrm o(mathrm o(a,b)$,定义为protical integer $ n $ $ n $ n = n = n = n = n = n = n n = n = n = n = n = n n = n n = n = n = n = n = n n = n = n.然后,我们进行了比较$ \ MATHRM O(AB)$和$ \ MATHRM O(a,b)$中的nilpotent组中的$,并表明,在一组$γ$的组中,比率$ \ mathrm o(ab)/\ mathrm o(a,a,b)$(a,a,b)$ smitiont in Do $ sebs $ seled $ s sep ynaty e;超过$γ$。特别是,我们概括了P. Hall的结果,该结果断言$ \ mathrm o(ab)= \ mathrm o(a,b)$ in $ p $ groups,带有$ p>γ$。我们对2类组的组进行了更详细的分析,该组允许人们对$ \ Mathrm O(AB)/\ Mathrm O(a,b)$进行更明确的描述。

An old problem in group theory is that of describing how the order of an element behaves under multiplication. To generalize some classical bounds concerning the order $\mathrm o(ab)$ of two elements $a, b$ in a finite abelian group to the non-commutative case, we replace $\mathrm o(ab)$ with a notion of mutual order $\mathrm o(a, b)$, defined as the least positive integer $n$ such that $a^nb^n = 1$. Motivated by this, we then compare $\mathrm o(ab)$ and $\mathrm o(a, b)$ in finite nilpotent groups, and show that in a group of class $γ$, the ratio $\mathrm o(ab)/\mathrm o(a, b)$ lies in some fixed finite set $S(γ) \subset \mathbb Q$, whose elements do not involve prime factors exceeding $γ$. In particular, we generalize a result of P. Hall, which asserts that $\mathrm o(ab) = \mathrm o(a, b)$ in $p$-groups with $p > γ$. We end with a more detailed analysis for groups of class 2, which allows one to give a more explicit description of $\mathrm o(ab)/\mathrm o(a, b)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源