论文标题

房间中的声场重建:介入符合超分辨率

Sound field reconstruction in rooms: inpainting meets super-resolution

论文作者

Lluís, Francesc, Martínez-Nuevo, Pablo, Møller, Martin Bo, Shepstone, Sven Ewan

论文摘要

在本文中,提出了一种基于深度学习的声场重建方法。显示出,通过使用任意布置的非常少数的不规则分布的麦克风,可以重建整个房间30-300 Hz中声压的大小。此外,该方法对欧几里得空间中测量值的位置不可知。特别是,所提出的方法使用有限数量的声场压力大小的任意离散测量值,以推断该场在空间中具有较低计算复杂性的空间中离散点的高分辨率网格。该方法基于一个类似U-NET的神经网络,其部分卷积仅在模拟数据上训练,该数据本身是由数以千计的数字构图构建的。尽管可以扩展到三个维度和不同的房间形状,但该方法着重于从三维声场的测量值重建矩形房间的二维平面。显示了使用模拟数据以及在真实听力室中实验验证的实验。结果表明,对于低数量的麦克风和计算要求,可能超过常规重建技术的性能。

In this paper, a deep-learning-based method for sound field reconstruction is proposed. It is shown the possibility to reconstruct the magnitude of the sound pressure in the frequency band 30-300 Hz for an entire room by using a very low number of irregularly distributed microphones arbitrarily arranged. Moreover, the approach is agnostic to the location of the measurements in the Euclidean space. In particular, the presented approach uses a limited number of arbitrary discrete measurements of the magnitude of the sound field pressure in order to extrapolate this field to a higher-resolution grid of discrete points in space with a low computational complexity. The method is based on a U-net-like neural network with partial convolutions trained solely on simulated data, which itself is constructed from numerical simulations of Green's function across thousands of common rectangular rooms. Although extensible to three dimensions and different room shapes, the method focuses on reconstructing a two-dimensional plane of a rectangular room from measurements of the three-dimensional sound field. Experiments using simulated data together with an experimental validation in a real listening room are shown. The results suggest a performance which may exceed conventional reconstruction techniques for a low number of microphones and computational requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源