论文标题

$ q $ - series forse theta系列的身份

On $q$-series identities for false theta series

论文作者

Jennings-Shaffer, Chris, Milas, Antun

论文摘要

我们证明了几个无限的家庭,具有$ q $ series的身份,用于假theta功能和相关系列。这些身份是由对顶点操作员超级级别和量子差异的模块的特征的考虑来激发的。我们还获得了Göllnitz-Gordon-Andrews类型的密切相关的模块化身份。作为我们身份的副产品,我们为Rogers Dilogarithm功能建立了几种身份,来自带有“ Double Poles”的多$ Q $ hyphemetric系列。

We prove several infinite families of $q$-series identities for false theta functions and related series. These identities are motivated by considerations of characters of modules of vertex operator superalgebras and of quantum dilogarithms. We also obtain closely related modular identities of the Göllnitz-Gordon-Andrews type. As a byproduct of our identities, we establish several identities for the Rogers dilogarithm function coming from multi $q$-hypergeometric series with "double poles".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源