论文标题

较高的尺寸必需最小值和循环的等分分配

Higher dimensional essential minima and equidistribution of cycles

论文作者

Gualdi, Roberto, Martínez, César

论文摘要

小点的基本最小值和等分分配是算术几何形状中两个完善的相互关联的受试者。但是,缺乏与较高维度相关的最低限度的基本相似之处,而这些等级分配是一个探索远不如探索的话题。 在本文中,我们介绍了一个新的较高维度最小值的新概念,并使用它来证明对通用和小有效周期的等分分配。后者通过考虑循环并允许对算术基准更加可爱来概括先前的更高维度等级定理。

The essential minimum and equidistribution of small points are two well-established interrelated subjects in arithmetic geometry. However, there is lack of an analogue of essential minimum dealing with higher dimensional subvarieties, and the equidistribution of these is a far less explored topic. In this paper, we introduce a new notion of higher dimensional essential minimum and use it to prove equidistribution of generic and small effective cycles. The latter generalizes the previous higher dimensional equidistribution theorems by considering cycles and by allowing more fexibility on the arithmetic datum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源