论文标题

可扩展且可自定义的基准问题,用于多个目标优化

Scalable and Customizable Benchmark Problems for Many-Objective Optimization

论文作者

Meneghini, Ivan Reinaldo, Alves, Marcos Antonio, Gaspar-Cunha, António, Guimarães, Frederico Gadelha

论文摘要

解决多目标问题(MAOPS)在多目标优化(MOO)字段中仍然是一个重大挑战。测量算法性能的一种方法是通过使用基准功能(也称为测试功能或测试套件),这是具有定义明确的数学公式,已知解决方案以及各种功能和困难的人为问题。在本文中,我们为MAOPS提出了一个可扩展和可自定义基准问题的参数化发电机。它能够产生问题,这些问题可以重现其他基准中存在的功能,并且还具有一些新功能的问题。我们在这里提出了生成基准测试的概念,其中人们可以通过控制问题应具有的特定特征的参数来生成无限数量的MOO问题:变量和目标数量的可伸缩性,偏见,欺骗性,多模态,可靠性和非bust型和非态度的解决方案,Pareto前和约束的形状。拟议的广义位置距离(GPD)可调基准生成器使用位置距离范式,这是一种用于建筑测试功能的基本方法,用于其他基准,例如Deb,Thiele,Laumanns和Zitzler(DTLZ),步行鱼类组(WFG)等。它在任何数量的变量和目标中都包含可扩展的问题,并且呈现具有不同特征的帕累托前沿。最终的功能易于理解和可视化,易于实现,快速计算,并且他们的帕累托最佳解决方案是已知的。

Solving many-objective problems (MaOPs) is still a significant challenge in the multi-objective optimization (MOO) field. One way to measure algorithm performance is through the use of benchmark functions (also called test functions or test suites), which are artificial problems with a well-defined mathematical formulation, known solutions and a variety of features and difficulties. In this paper we propose a parameterized generator of scalable and customizable benchmark problems for MaOPs. It is able to generate problems that reproduce features present in other benchmarks and also problems with some new features. We propose here the concept of generative benchmarking, in which one can generate an infinite number of MOO problems, by varying parameters that control specific features that the problem should have: scalability in the number of variables and objectives, bias, deceptiveness, multimodality, robust and non-robust solutions, shape of the Pareto front, and constraints. The proposed Generalized Position-Distance (GPD) tunable benchmark generator uses the position-distance paradigm, a basic approach to building test functions, used in other benchmarks such as Deb, Thiele, Laumanns and Zitzler (DTLZ), Walking Fish Group (WFG) and others. It includes scalable problems in any number of variables and objectives and it presents Pareto fronts with different characteristics. The resulting functions are easy to understand and visualize, easy to implement, fast to compute and their Pareto optimal solutions are known.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源