论文标题
AUTOFCL:自动调整完全连接的图层以处理小数据集
AutoFCL: Automatically Tuning Fully Connected Layers for Handling Small Dataset
论文作者
论文摘要
深度卷积神经网络(CNN)在过去几年中以图像分类为流行的机器学习模型,因为它们能够直接从输入图像中学习特定于问题的特征。深度学习模型的成功促进了建筑工程,而不是手工设计功能。但是,为给定任务设计最先进的CNN仍然是一项非平凡且具有挑战性的任务,尤其是在培训数据规模较小时。为了解决这一现象,转移学习已被用作普遍采用的技术。在将学习知识从一个任务转移到另一个任务的同时,与目标依赖性完全连接(FC)层进行微调通常会在目标任务上产生更好的结果。在本文中,提出的AUTOFCL模型试图使用贝叶斯优化自动学习CNN的FC层的结构。为了评估拟议的AUTOFCL的性能,我们使用了五个预训练的CNN模型,例如VGG-16,Resnet,Densenet,Mobilenet和Nasnetmobile。实验是在三个基准数据集上进行的,即Caltech-101,Oxford-102 Flowers和UC Merced土地使用数据集。根据这项研究中进行的实验,对新学到的(目标依赖性)FC层进行微调导致最先进的性能。所提出的AUTOFCL方法通过分别达到94.38%和98.89%的精度,优于Caltech-101和Oxford-102 Flowers数据集的现有方法。但是,我们的方法可以在UC Merced土地使用数据集上获得可比的性能,其精度为96.83%。该研究的源代码可在https://github.com/shabbeersh/autofcl上获得。
Deep Convolutional Neural Networks (CNN) have evolved as popular machine learning models for image classification during the past few years, due to their ability to learn the problem-specific features directly from the input images. The success of deep learning models solicits architecture engineering rather than hand-engineering the features. However, designing state-of-the-art CNN for a given task remains a non-trivial and challenging task, especially when training data size is less. To address this phenomena, transfer learning has been used as a popularly adopted technique. While transferring the learned knowledge from one task to another, fine-tuning with the target-dependent Fully Connected (FC) layers generally produces better results over the target task. In this paper, the proposed AutoFCL model attempts to learn the structure of FC layers of a CNN automatically using Bayesian optimization. To evaluate the performance of the proposed AutoFCL, we utilize five pre-trained CNN models such as VGG-16, ResNet, DenseNet, MobileNet, and NASNetMobile. The experiments are conducted on three benchmark datasets, namely CalTech-101, Oxford-102 Flowers, and UC Merced Land Use datasets. Fine-tuning the newly learned (target-dependent) FC layers leads to state-of-the-art performance, according to the experiments carried out in this research. The proposed AutoFCL method outperforms the existing methods over CalTech-101 and Oxford-102 Flowers datasets by achieving the accuracy of 94.38% and 98.89%, respectively. However, our method achieves comparable performance on the UC Merced Land Use dataset with 96.83% accuracy. The source codes of this research are available at https://github.com/shabbeersh/AutoFCL.