论文标题

Lambert-Tsallis和Lambert-Kaniadakis的应用在差分方程式和差异方程式中具有变形指数衰减

Applications of Lambert-Tsallis and Lambert-Kaniadakis Functions in Differential and Difference Equations with Deformed Exponential Decay

论文作者

da Silva, J. L. E., da Silva, G. B., Ramos, R. V.

论文摘要

通过差分(连续情况)或差异方程(离散情况)模拟的具有变形指数衰减的动力系统的分析,在这里我们考虑Tsallis和Kaniadakis指数,可能需要使用最近提出的变形兰伯特函数:Lambert-Tsallis和Lambert-Tsallis和Lambert-KaniaiDakis函数。在这个方向上,目前的工作使用Lambert-Tsallis和Lambert-Kaniadakis的功能来确定弱混沌状态下的稳定行为和动力学的作用,研究了具有变形指数衰减的逻辑图。此外,当垂直运动由二阶导数系数中的tsallis指数指数的非线性微分方程控制时,我们研究了弹丸的运动。在这种情况下,我们使用Lambert-Tsallis函数计算了弹丸的范围。

The analysis of a dynamical system modelled by differential (continuum case) or difference equation (discrete case) with deformed exponential decay, here we consider Tsallis and Kaniadakis exponentials, may require the use of the recently proposed deformed Lambert functions: the Lambert-Tsallis and Lambert-Kaniadakis functions. In this direction, the present work studies the logistic map with deformed exponential decay, using the Lambert-Tsallis and the Lambert-Kaniadakis functions to determine the stable behaviour and the dynamic of the disentropy in the weak chaotic regime. Furthermore, we investigate the motion of projectile when the vertical motion is governed by a non-linear differential equation with Tsallis exponential in the coefficient of the second order derivative. In this case, we calculated the range of the projectile using the Lambert-Tsallis function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源