论文标题

RICCI阳性指标的模量空间五

Moduli spaces of Ricci positive metrics in dimension five

论文作者

Goodman, McFeely Jackson

论文摘要

我们使用自旋$^c $ dirac运算符的$η$不变式来区分带有正质曲率的Riemannian指标的Moduli空间的连接组件。然后,我们发现许多非形态的五个维歧管,这些模量空间都具有无限的许多组件。这些歧管是$ \#^a \ Mathbb {c} p^2 \#^b \ edimine {\ Mathbb {c} p^2} $上的总空间,$ \#^a \ Mathbb {c} p^2 \#^b \ edine overline {\ Mathbb {c} p^2} $。一路上,我们将5个manifolds与基本组$ \ mathbb {z} _2 $允许免费$ s^1 $动作分类。

We use the $η$ invariants of spin$^c$ Dirac operators to distinguish connected components of moduli spaces of Riemannian metrics with positive Ricci curvature. We then find infinitely many non-diffeomorphic five dimensional manifolds for which these moduli spaces each have infinitely many components. The manifolds are total spaces of principal $S^1$ bundles over $\#^a\mathbb{C}P^2\#^b\overline{\mathbb{C}P^2}$ and the metrics are lifted from Ricci positive metrics on the bases. Along the way we classify 5-manifolds with fundamental group $\mathbb{Z}_2$ admitting free $S^1$ actions with simply connected quotients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源