论文标题

关于雅各比级系数的亚伯方程解决方案的平滑度

On Smoothness of the Abel Equation Solution in Terms of the Jacoby Series Coefficients

论文作者

Kukushkin, Maksim V.

论文摘要

在本文中,我们继续研究ABEL方程,正确的部分属于Lebesgue加权空间。我们改善了先前已知的结果 - 根据雅各比级数系数的唯一性和存在定理,这使我们有机会找到和分类解决方案,这是由于某些关系包含右侧的雅各比系数的渐近性。新的主要结果如下:对参数施加的条件,在该参数下,ABEL方程在该参数下具有由系列代表的独特解决方案;建立了参数值与解决方案平滑度之间的关系。证明了参数之一和解决方案的平滑度之间的独立性。

In this paper we continue the investigation of the Abel equation with the right part belonging to a Lebesgue weighted space. We have improved the previously known result - the uniqueness and existence theorem formulated in terms of the Jacoby series coefficients that gives us an opportunity to find and classify a solution due to an asymptotic of some relation containing the Jacoby coefficients of the right part. The new main results are in the following: The conditions imposed on the parameters, under which the Abel equation has a unique solution represented by the series, are formulated; The relationship between the values of the parameters and the solution smoothness is established. The independence between one of the parameters and the smoothness of the solution is proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源