论文标题

矩阵积分从高斯措施中的Hurwitz数字

Hurwitz numbers from matrix integrals over Gaussian measure

论文作者

Natanzon, Sergei M., Orlov, Aleksandr Yu.

论文摘要

我们解释了与源矩阵的复合矩阵集合上的高斯积分如何生成最通用类型的Hurwitz数字,即具有随意定向或不可定向的基本表面和分支点上的任意轮廓的Hurwitz数字。我们使用Feynman图方法。显示了与拓扑理论以及某些经典和量子综合理论的联系,特别是Witten对二维规定理论的描述。

We explain how Gaussian integrals over ensemble of complex matrices with source matrices generate Hurwitz numbers of the most general type, namely, Hurwitz numbers with arbitrary orientable or non-orientable base surface and arbitrary profiles at branch points. We use the Feynman diagram approach. The connections with topological theories and also with certain classical and quantum integrable theories in particular with Witten's description of two-dimensional gauge theory are shown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源