论文标题

基于学习的Max-Min Fair Hybrid预编码MMWave多播

Learning-based Max-Min Fair Hybrid Precoding for mmWave Multicasting

论文作者

Abanto-Leon, Luis F., Hong, Gek, Sim

论文摘要

本文研究了混合传输预编码器和模拟的联合设计接收组合器,用于单组多播在毫米波系统中。我们提出了LB-GDM,这是一种基于低复杂性学习的方法,该方法利用动量和优化的设计来利用梯度下降(i)混合发射器的数字和模拟组成部分以及(ii)每个接收器的模拟组合者。此外,我们还扩展了我们提出的设计完全数字预编码器的方法。我们通过数值评估表明,与基于半决赛放松的竞争设计相比,在混合动力或数字预码器中实现LB-GDM的最高表现。具体而言,就最小信噪比而言,我们报告的改善显着改善,完全数字和混合预言器的增长分别为105%和101%。

This paper investigates the joint design of hybrid transmit precoder and analog receive combiners for single-group multicasting in millimeter-wave systems. We propose LB-GDM, a low-complexity learning-based approach that leverages gradient descent with momentum and alternating optimization to design (i) the digital and analog constituents of a hybrid transmitter and (ii) the analog combiners of each receiver. In addition, we also extend our proposed approach to design fully-digital precoders. We show through numerical evaluation that, implementing LB-GDM in either hybrid or digital precoders attain superlative performance compared to competing designs based on semidefinite relaxation. Specifically, in terms of minimum signal-to-noise ratio, we report a remarkable improvement with gains of up to 105% and 101% for the fully-digital and hybrid precoders, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源