论文标题

通过神经网络识别智能手机数据的统计功能

Driver Identification by Neural Network on Extracted Statistical Features from Smartphone Data

论文作者

Ahmadian, Ruhallah, Ghatee, Mehdi

论文摘要

运输的未来是由使用人工智能改善生活和运输的驱动的。本文使用智能手机收集的数据提出了一种基于神经网络的系统,用于驾驶员识别。该系统可自动,可靠,实时地识别驾驶员,而无需面部识别,也不侵犯隐私。系统体系结构由三个模块数据收集,预处理和标识组成。在数据收集模块中,使用智能手机收集加速度计和陀螺仪传感器的数据。预处理模块包括去除噪声,数据清洁和分割。在此模块中,将检索丢失的值,并将删除停止车辆的数据。最后,从数据窗口中提取有效的统计特性。在标识模块中,机器学习算法用于识别驱动程序的模式。根据实验,用于驾驶员识别的最佳算法是MLP,最大精度为96%。该解决方案可用于未来的运输中,以开发基于驾驶员的保险系统,以及用于应用惩罚和激励措施的系统的开发。

The future of transportation is driven by the use of artificial intelligence to improve living and transportation. This paper presents a neural network-based system for driver identification using data collected by a smartphone. This system identifies the driver automatically, reliably and in real-time without the need for facial recognition and also does not violate privacy. The system architecture consists of three modules data collection, preprocessing and identification. In the data collection module, the data of the accelerometer and gyroscope sensors are collected using a smartphone. The preprocessing module includes noise removal, data cleaning, and segmentation. In this module, lost values will be retrieved and data of stopped vehicle will be deleted. Finally, effective statistical properties are extracted from data-windows. In the identification module, machine learning algorithms are used to identify drivers' patterns. According to experiments, the best algorithm for driver identification is MLP with a maximum accuracy of 96%. This solution can be used in future transportation to develop driver-based insurance systems as well as the development of systems used to apply penalties and incentives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源