论文标题
通过深度原型分析学习极端表示
Learning Extremal Representations with Deep Archetypal Analysis
论文作者
论文摘要
从极端意义上讲,原型是典型的人口代表,典型性被理解为特征或特征的最极端表现。在线性特征空间中,原型近似数据凸赫尔,允许所有数据点表示为原型的凸混合物。但是,可能并非总是有可能在给定特征空间中识别有意义的原型。学习适当的功能空间并同时识别合适的原型可以解决此问题。本文介绍了由神经网络参数化的线性原型模型的生成公式。通过引入距离依赖性原型损失,可以将线性原型模型集成到差异自动编码器的潜在空间中,并且可以终端到端学习相对于未知原型的最佳表示。线性原型分析作为深度变分信息瓶颈的重新制定允许在训练过程中纳入任意复杂的侧面信息。此外,提出了基于修改后的Dirichlet分布的替代先验。通过探索女性面部表情的原型,同时使用这些表达式的多人情感评分作为副信息来证明所提出方法的现实适用性。第二应用物说明了对小有机分子的化学空间的探索。在此实验中,证明了交换侧面信息但保持相同的分子,e。 g。使用AS侧信息,每个分子而不是带隙能的热容量将导致鉴定不同的原型。作为一种应用,这些学到的化学空间表示表示可能会揭示从头分子设计的不同起点。
Archetypes are typical population representatives in an extremal sense, where typicality is understood as the most extreme manifestation of a trait or feature. In linear feature space, archetypes approximate the data convex hull allowing all data points to be expressed as convex mixtures of archetypes. However, it might not always be possible to identify meaningful archetypes in a given feature space. Learning an appropriate feature space and identifying suitable archetypes simultaneously addresses this problem. This paper introduces a generative formulation of the linear archetype model, parameterized by neural networks. By introducing the distance-dependent archetype loss, the linear archetype model can be integrated into the latent space of a variational autoencoder, and an optimal representation with respect to the unknown archetypes can be learned end-to-end. The reformulation of linear Archetypal Analysis as deep variational information bottleneck, allows the incorporation of arbitrarily complex side information during training. Furthermore, an alternative prior, based on a modified Dirichlet distribution, is proposed. The real-world applicability of the proposed method is demonstrated by exploring archetypes of female facial expressions while using multi-rater based emotion scores of these expressions as side information. A second application illustrates the exploration of the chemical space of small organic molecules. In this experiment, it is demonstrated that exchanging the side information but keeping the same set of molecules, e. g. using as side information the heat capacity of each molecule instead of the band gap energy, will result in the identification of different archetypes. As an application, these learned representations of chemical space might reveal distinct starting points for de novo molecular design.