论文标题
使用批处理温度补偿的自级微观结构的VOC传感
VOC Sensing Using Batch-fabricated Temperature Compensated Self-Leveling Microstructures
论文作者
论文摘要
我们介绍了基于机械杠杆结构的自我水平的低功率,基于聚合物的VOC传感器的设计,制造和响应。该设备利用折叠的聚合物涂层的微型磁管来实现被动温度补偿,而无需额外的补偿传感器或电子设备。我们证明,一个自我升级的蒸气传感器提供与简单的微型电位几何形状相同的气体响应,在发生35-85%RH变化时,设备电容的变化约为20%,同时显示由于温度从23-72°C从52°C升高的〜52-FORT COPTAL ALT-SPOAL ALTIPERILECALILECENER升高时,由于环境温度的变化近零基线漂移。使用三个聚合物(聚酰亚胺,聚氨酯和PDMS)对五个不同的分析物(乙醇,丙酮,苯,己烷和水)测量VOC传感器的响应,并使用基于SVM的模型来显示目标特异性。该传感器还显示了〜138S的吸收响应时间(τ90)。我们提出,自级蒸气传感器几何形状是对简单的微型蒸汽传感器的显着改进,因为它提供了相同的性能,但显示出几乎完全消除了温度引起的基线漂移。
We present the design, fabrication, and response of a low-power, polymer-based VOC sensor based on the self-leveling of mechanically leveraged structures. The device utilizes folded polymer-coated microcantilevers to achieve passive temperature compensation without the need for additional compensating sensors or electronics. We demonstrate that a self-leveling vapor sensor provides the same gas response as a simple microcantilever geometry, showing ~20% change in device capacitance when subjected to 35-85 %RH change while showing nearly-zero baseline drift due to changes in ambient temperature when the temperature is increased from 23-72°C which is ~52-fold better than a simple microcantilever geometry. The response of the VOC sensor was measured using three polymers (Polyimide, Polyurethane, and PDMS) against five different analytes (Ethanol, Acetone, Benzene, Hexane, and Water) and an SVM-based model was used to show target specificity. The sensor also showed an absorption response time (τ90) of ~138s. We propose that the self-leveling vapor sensor geometry is a significant improvement to a simple microcantilever vapor sensor as it offers the same performance but shows near-complete elimination of temperature-induced baseline drift.