论文标题

运营商可以将$ ul^\ infty $映射到$ {\ rm {bmo}} _ U $的足够条件

A Sufficient Condition For An Operator To Map $uL^\infty$ to ${\rm{BMO}}_u$

论文作者

Demir, Sakin

论文摘要

令$ t $为操作员,并假设存在一个正常数$ c $,以便$$ \ weft(\ int_i | tf(x)|^q \,dx \ right)^{1/q} \ leq c \ leq c \ left(\ int_i | f(x) $ i $ in $ \ mathbb {r} $和l^{\ infty}(\ mathbb {r})$中的$ f \ in $ f \。然后,我们表明$ t $ maps $ ul^{\ infty} $ to $ {\ rm {bmo}} _ U $。

Let $T$ be an operator and suppose that there exists a positive constant $C$ such that $$\left(\int_I|Tf(x)|^q\, dx\right)^{1/q}\leq C\left(\int_I|f(x)|^q\, dx\right)^{1/q}$$ for every $q$ which is near enough to $1$ and for every interval $I$ in $\mathbb{R}$ and $f\in L^{\infty}(\mathbb{R})$. Then we show that $T$ maps $uL^{\infty}$ to ${\rm{BMO}}_u$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源