论文标题

沮丧的Kagome晶格COSN中的拓扑平面乐队

Topological flat bands in frustrated kagome lattice CoSn

论文作者

Kang, Mingu, Fang, Shiang, Ye, Linda, Po, Hoi Chun, Denlinger, Jonathan, Jozwiak, Chris, Bostwick, Aaron, Rotenberg, Eli, Kaxiras, Efthimios, Checkelsky, Joseph G., Comin, Riccardo

论文摘要

由电子在真实空间中的强烈定位引起的动量空间中的电子平坦带是实现强相关现象的理想阶段。在某些具有内置几何挫败感的晶格中,电子限制和扁平带自然而然地来自电子跳跃途径的破坏性干扰。如果与自旋轨道耦合结合使用,这种晶格培养的平坦带通常会赋予非平凡拓扑结构,而到目前为止,它们在冷凝物质系统中的实验实现是难以捉摸的。在这里,我们使用角度分辨的光发射光谱和带状结构计算,在沮丧的Kagome系统COSN中向费米水平附近的拓扑平坦带直接观察。与来自同一轨道的狄拉克频带相比,平面带表现为沿G-M高对称方向的无散电子激发(低于150 meV)的阶数。平面带的挫败感驱动的性质是通过相应有效的Wannier波函数的真实空间手性D轨道纹理直接证实的。旋转轨道耦合在狄拉克和平坦带之间的二次带触点点上打开了80 MeV的较大差距,从而赋予了二维Brillouin区域的平面频段非零Z2拓扑不变。我们对晶格驱动的拓扑平面频段的观察为在强相关物理学和电子拓扑之间的十字路口开辟了一条有前途的新型物质新兴阶段的途径。

Electronic flat bands in momentum space, arising from strong localization of electrons in real space, are an ideal stage to realize strong correlation phenomena. In certain lattices with built-in geometrical frustration, electronic confinement and flat bands can naturally arise from the destructive interference of electronic hopping pathways. Such lattice-borne flat bands are often endowed with nontrivial topology if combined with spin-orbit coupling, while their experimental realization in condensed matter system has been elusive so far. Here, we report the direct observation of topological flat bands in the vicinity of the Fermi level in frustrated kagome system CoSn, using angle-resolved photoemission spectroscopy and band structure calculations. The flat band manifests itself as a dispersionless electronic excitation along the G-M high symmetry direction, with an order of magnitude lower bandwidth (below 150 meV) compared to the Dirac bands originating from the same orbitals. The frustration-driven nature of the flat band is directly confirmed by the real-space chiral d-orbital texture of the corresponding effective Wannier wave functions. Spin-orbit coupling opens a large gap of 80 meV at the quadratic band touching point between the Dirac and flat bands, endowing a nonzero Z2 topological invariant to the flat band in the two-dimensional Brillouin zone. Our observation of lattice-driven topological flat band opens a promising route to engineer novel emergent phases of matter at the crossroad between strong correlation physics and electronic topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源