论文标题
Babo:背景激活涂黑以进行有效的对象检测
BABO: Background Activation Black-Out for Efficient Object Detection
论文作者
论文摘要
深度学习的最新进展使得由多个视觉任务组成的复杂现实世界用例和检测任务被转移到边缘方面,这是整个工作负载的预处理。由于在资源构成设备上运行深层模型是具有挑战性的,因此需要采用高效推理方法的技术。在本文中,我们提出了一种物体感知的对象检测方法,以通过在不存在目标对象的背景区域上稀疏激活值来降低计算成本。可以利用稀疏激活来提高软件或硬件加速稀疏卷积技术的推理速度。为了实现这一目标,我们在对象检测(OD)网络的前结合了一个轻量级的镜头掩码生成(OMG)网络,以便在将输入图像的不必要背景区域归零之前,然后再馈入OD网络。在实验中,通过将背景激活值切换到零,即使在Relu激活的同时,同时保持MS-Coco上的准确性,零值的平均零值也从Mobilenetv2-Ssdlite上的36%增加到68%。该结果表明,当仅考虑非零的多重蓄能操作时,包括OMG和OD网络在内的总MAC可以将其降低到原始OD模型的62%。此外,我们在重型网络(VGG和视网膜)和附加数据集(Pascal VOC)中显示出类似的趋势。
Recent advances in deep learning have enabled complex real-world use cases comprised of multiple vision tasks and detection tasks are being shifted to the edge side as a pre-processing step of the entire workload. Since running a deep model on resource-constraint devices is challenging, techniques for efficient inference methods are demanded. In this paper, we present an objectness-aware object detection method to reduce computational cost by sparsifying activation values on background regions where target objects don't exist. Sparsified activation can be exploited to increase inference speed by software or hardware accelerated sparse convolution techniques. To accomplish this goal, we incorporate a light-weight objectness mask generation (OMG) network in front of an object detection (OD) network so that it can zero out unnecessary background areas of an input image before being fed into the OD network. In experiments, by switching background activation values to zero, the average number of zero values increases further from 36% to 68% on MobileNetV2-SSDLite even with ReLU activation while maintaining accuracy on MS-COCO. This result indicates that the total MAC including both OMG and OD networks can be reduced to 62% of the original OD model when only non-zero multiply-accumulate operations are considered. Moreover, we show a similar tendency in heavy networks (VGG and RetinaNet) and an additional dataset (PASCAL VOC).