论文标题

TPPO:伪甲骨文的新型轨迹预测变量

TPPO: A Novel Trajectory Predictor with Pseudo Oracle

论文作者

Yang, Biao, He, Caizhen, Wang, Pin, Chan, Ching-yao, Liu, Xiaofeng, Chen, Yang

论文摘要

在动态场景中的预测行人轨迹仍然是各种应用程序(例如自动驾驶和具有社会意识的机器人)的关键问题。由于人类和人类对象的相互作用以及人类随机性引起的未来不确定性,这种预测是具有挑战性的。基于生成模型的方法通过采样潜在变量来处理未来的不确定性。但是,很少有研究探讨了潜在变量的产生。在这项工作中,我们使用伪甲骨文(TPPO)提出了轨迹预测变量,该预测是基于生成模型的轨迹预测指标。第一个伪甲骨文是行人的移动指示,第二个是根据地面真相轨迹估算的潜在变量。社会关注模块用于基于行人移动方向与未来轨迹之间的相关性来汇总邻居的互动。这种相关性的灵感来自于行人的未来轨迹通常受到前方行人的影响。提出了一个潜在变量预测变量,以估算观察到的轨迹和地面真实轨迹的潜在变量分布。此外,在训练期间,这两个分布之间的差距最小化。因此,潜在变量预测变量可以估算从观察到的轨迹到根据基地轨迹估计的近似值的潜在变量。我们将TPPO的性能与几个公共数据集上的相关方法进行了比较。结果表明,TPPO优于平均位移错误和最终位移错误的最先进方法。消融研究表明,随着测试期间的采样时间下降,预测性能不会大大降低。

Forecasting pedestrian trajectories in dynamic scenes remains a critical problem in various applications, such as autonomous driving and socially aware robots. Such forecasting is challenging due to human-human and human-object interactions and future uncertainties caused by human randomness. Generative model-based methods handle future uncertainties by sampling a latent variable. However, few studies explored the generation of the latent variable. In this work, we propose the Trajectory Predictor with Pseudo Oracle (TPPO), which is a generative model-based trajectory predictor. The first pseudo oracle is pedestrians' moving directions, and the second one is the latent variable estimated from ground truth trajectories. A social attention module is used to aggregate neighbors' interactions based on the correlation between pedestrians' moving directions and future trajectories. This correlation is inspired by the fact that pedestrians' future trajectories are often influenced by pedestrians in front. A latent variable predictor is proposed to estimate latent variable distributions from observed and ground-truth trajectories. Moreover, the gap between these two distributions is minimized during training. Therefore, the latent variable predictor can estimate the latent variable from observed trajectories to approximate that estimated from ground-truth trajectories. We compare the performance of TPPO with related methods on several public datasets. Results demonstrate that TPPO outperforms state-of-the-art methods with low average and final displacement errors. The ablation study shows that the prediction performance will not dramatically decrease as sampling times decline during tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源