论文标题

超优化的张量网络收缩

Hyper-optimized tensor network contraction

论文作者

Gray, Johnnie, Kourtis, Stefanos

论文摘要

张量网络代表了许多学科的计算方法中的最新方法,包括量子多体系统和量子电路的经典模拟。当前利息的几种应用导致具有不规则几何形状的张量网络。找到此类网络的最佳收缩路径是一个中心问题,对计算时间和内存足迹产生了指数影响。在这项工作中,我们实施了新的随机协议,这些协议为任意和大张量网络找到非常高质量的收缩路径。我们测试了各种基准测试的方法,包括最近在Google量子芯片上实施的随机量子电路实例。我们发现,所获得的路径可能非常接近最佳,并且通常比最成熟的方法更好。由于不同的潜在几何形状适合不同的方法,因此我们还引入了一种超优化方法,其中所应用的方法及其算法参数在路径发现过程中都会调整。发现的收缩方案质量的提高对量子多体系统的模拟,尤其是新量子芯片的基准测试具有重大的实际意义。具体而言,我们估计速度超过10,000美元$ \ times $,而对Sycamore“至高无上”电路的经典模拟的原始期望。

Tensor networks represent the state-of-the-art in computational methods across many disciplines, including the classical simulation of quantum many-body systems and quantum circuits. Several applications of current interest give rise to tensor networks with irregular geometries. Finding the best possible contraction path for such networks is a central problem, with an exponential effect on computation time and memory footprint. In this work, we implement new randomized protocols that find very high quality contraction paths for arbitrary and large tensor networks. We test our methods on a variety of benchmarks, including the random quantum circuit instances recently implemented on Google quantum chips. We find that the paths obtained can be very close to optimal, and often many orders or magnitude better than the most established approaches. As different underlying geometries suit different methods, we also introduce a hyper-optimization approach, where both the method applied and its algorithmic parameters are tuned during the path finding. The increase in quality of contraction schemes found has significant practical implications for the simulation of quantum many-body systems and particularly for the benchmarking of new quantum chips. Concretely, we estimate a speed-up of over 10,000$\times$ compared to the original expectation for the classical simulation of the Sycamore `supremacy' circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源