论文标题
早期宇宙的动力学在具有辐射和广义的Chaplygin气体的模型中
The dynamics of the early universe in a model with radiation and a generalized Chaplygin gas
论文作者
论文摘要
早期的宇宙是通过量化空间曲面正弯曲的Friedmann-Robertson-Walker模型来建模的。在此模型中,宇宙被两种流体填充:辐射和广义的Chaplygin气体。该模型的量化是根据J. A. Wheeler和B. Dewitt引起的处方进行的。使用Schutz的形式主义,在有效的潜在$ v_ {eff} $的作用下,恢复了时间概念,然后将时间概念恢复为依赖时间的schrödinger方程,该方程将统治着早期宇宙的动态。该潜力取决于三个参数。根据这些参数的值,$ v_ {eff} $可能具有两种不同的形状。 $ v_ {eff}(a)$可能具有屏障的形状或井的形状,然后是屏障的形状。从数值上讲,我们解决了适当的时间依赖性schrödinger方程,并在两种情况下都能获得初始波函数的时间演变。这些波功能满足合适的边界条件。对于$ v_ {eff} $的这两种形状,我们计算隧道概率,这是与辐射能$ e_m $相关的平均动能的函数,以及广义chaplygin Gas的三个参数:$α$,$ a $ a $ a $和$ b $。对于$ v_ {eff} $的两种形状的隧道概率,表明宇宙应以$ e_m $,$α$,$ a $和$ b $的最高值的最高值和最高的值进行核定。最后,我们研究了波函数隧道$ v_ {eff} $之后的古典宇宙演变。计算表明,宇宙可能会从普兰克时代出现在通货膨胀阶段。
The early universe is modeled through the quantization of a Friedmann-Robertson-Walker model with positive curvature of the spatial hypersurfaces. In this model, the universe is filled by two fluids: radiation and a generalized Chaplygin gas. The quantization of this model is made following the prescriptions due to J. A. Wheeler and B. DeWitt. Using the Schutz's formalism, the time notion is recovered and the Wheeler-DeWitt equation transforms into a time dependent Schrödinger equation, which rules the dynamics of the early universe, under the action of an effective potential $V_{eff}$. That potential, depends on three parameters. Depending on the values of these parameters, $V_{eff}$ may have two different shapes. $V_{eff}(a)$ may have the shape of a barrier or the shape of a well followed by a barrier. We solve, numerically, the appropriate time dependent Schrödinger equation and obtain the time evolution of an initial wave function, for both cases. These wave functions satisfy suitable boundary conditions. For both shapes of $V_{eff}$, we compute the tunneling probability, which is a function of the mean kinetic energy associated to the radiation energy $E_m$ and of the three parameters of the generalized Chaplygin gas: $α$, $A$ and $B$. The tunneling probabilities, for both shapes of $V_{eff}$, indicates that the universe should nucleate with the highest possible values of $E_m$, $α$, $A$ and $B$. Finally, we study the classical universe evolution after the wavefunction has tunneled $V_{eff}$. The calculations show that the universe may emerge from the Planck era in an inflationary phase.