论文标题

使用粒子群优化,朝着实时全天候的全天候搜索重力波

Towards a real-time fully-coherent all-sky search for gravitational waves from compact binary coalescences using particle swarm optimization

论文作者

Normandin, Marc E., Mohanty, Soumya D.

论文摘要

虽然已知全天候搜索是最佳的,对于从紧凑型二进制融合中检测引力波信号是最佳的,但其高计算成本的当前搜索有限于基于敏感的整个方案。跟进以前的工作,证明了粒子群优化在降低此搜索的计算成本方面的有效性,我们提出了实现接近实时计算速度的实现。这是通过将PSO的搜索效率与基础数学形式主义的显着修订和优化的数值实现以及在分布式计算框架中的其他多线程并行层结合在一起来实现的。对于四个第二代探测器的网络,每个探测器都有$ 60 $〜最低数据的数据,此处介绍的实施时间的运行时间分别是$ \ \ $ \ $ \ $ \ \ \ \ \ \ \ \ \ \ $ \ $ \ gtrsim 10 $和$ \ gtrsim 12 $的网络信号噪声比率(SNRS)的数据持续时间。减少的运行时间是在检测敏感性方面的较小到可忽略不计的:对于高斯固定噪声,每年的虚假警报率为$ \ simeq 1 $〜事件,检测概率的损失为$ \ leq 5 \%$和$ \ \ \ leq leq 2 \%$,分别为$ 10 $和$ 12 $。使用快速实现,我们能够使用大量的模拟数据实现来量化双中性星质量范围内的参数估计中的频繁误差。揭示了参数估计误差和检测灵敏度对网络天线模式矩阵的条件数量的明显依赖性。结合以前的工作,本文牢固地确定了与地面探测器相关的整个二进制Inspiral质量范围中基于PSO的全套搜索的有效性。

While a fully-coherent all-sky search is known to be optimal for detecting gravitational wave signals from compact binary coalescences, its high computational cost has limited current searches to less sensitive coincidence-based schemes. Following up on previous work that has demonstrated the effectiveness of Particle Swarm Optimization in reducing the computational cost of this search, we present an implementation that achieves near real-time computational speed. This is achieved by combining the search efficiency of PSO with a significantly revised and optimized numerical implementation of the underlying mathematical formalism along with additional multi-threaded parallelization layers in a distributed computing framework. For a network of four second-generation detectors with $60$~min data from each, the runtime of the implementation presented here ranges between $\approx 1.4$ to $\approx 0.5$ times the data duration for network signal-to-noise ratios (SNRs) of $\gtrsim 10$ and $\gtrsim 12$, respectively. The reduced runtimes are obtained with small to negligible losses in detection sensitivity: for a false alarm rate of $\simeq 1$~event per year in Gaussian stationary noise, the loss in detection probability is $\leq 5\%$ and $\leq 2\%$ for SNRs of $10$ and $12$, respectively. Using the fast implementation, we are able to quantify frequentist errors in parameter estimation for signals in the double neutron star mass range using a large number of simulated data realizations. A clear dependence of parameter estimation errors and detection sensitivity on the condition number of the network antenna pattern matrix is revealed. Combined with previous work, this paper securely establishes the effectiveness of PSO-based fully-coherent all-sky search across the entire binary inspiral mass range that is relevant to ground-based detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源