论文标题

宏观交通流量建模与物理正规化高斯流程:对机器学习应用的新见解

Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian Process: A New Insight into Machine Learning Applications

论文作者

Yuan, Yun, Yang, Xianfeng Terry, Zhang, Zhao, Zhe, Shandian

论文摘要

尽管最近在流量流建模中实施了广泛的机器学习(ML)技术,但在具有小或嘈杂的数据集的情况下,这些数据驱动的方法通常无法准确。为了解决这个问题,本研究提出了一个新的建模框架,名为Physics Parodicatization Machine学习(PRML),以将经典的交通流模型(称为物理模型)编码为ML体系结构,并将ML培训过程正规化。更具体地说,开发了随机物理正规化高斯工艺(PRGP)模型,并使用贝叶斯推理算法来估计PRGP的平均值和核。还开发了基于宏观交通流模型的物理正常化程序,以通过影子GP来增强估计,并使用增强的潜在力模型将物理知识编码为随机过程。基于后正规化推理框架,还开发了有效的随机优化算法,以最大程度地提高系统可能性的证据。为了证明所提出的模型的有效性,本文对从犹他州I-15高速公路收集的现实世界数据集进行了经验研究。结果表明,新的PRGP模型可以胜过以前的兼容方法,例如校准的纯物理模型和纯机器学习方法,以估计精度和输入鲁棒性。

Despite the wide implementation of machine learning (ML) techniques in traffic flow modeling recently, those data-driven approaches often fall short of accuracy in the cases with a small or noisy dataset. To address this issue, this study presents a new modeling framework, named physics regularized machine learning (PRML), to encode classical traffic flow models (referred as physical models) into the ML architecture and to regularize the ML training process. More specifically, a stochastic physics regularized Gaussian process (PRGP) model is developed and a Bayesian inference algorithm is used to estimate the mean and kernel of the PRGP. A physical regularizer based on macroscopic traffic flow models is also developed to augment the estimation via a shadow GP and an enhanced latent force model is used to encode physical knowledge into stochastic processes. Based on the posterior regularization inference framework, an efficient stochastic optimization algorithm is also developed to maximize the evidence lowerbound of the system likelihood. To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset which is collected from a stretch of I-15 freeway, Utah. Results show the new PRGP model can outperform the previous compatible methods, such as calibrated pure physical models and pure machine learning methods, in estimation precision and input robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源