论文标题
基于GLRT的自适应阈值,用于帕累托分布的混乱中的帕累托靶的CFAR检测
GLRT based Adaptive-Thresholding for CFAR-Detection of Pareto-Target in Pareto-Distributed Clutter
论文作者
论文摘要
在各种情况下,在帕累托(Pareto)分布获得了海上杂物回报的验证之后,文献中出现了一些适应性屈服的启发式方法,以持续的错误警报率(CFAR)标准。这些方案使用了最初用于检测指数分布的杂物中的swerling-I(指数)目标的相同自适应阈值形式。在这种理想主义假设下获得的统计程序将影响检测性能,而将检测性能应用于较新的目标和混乱模型,尤其是。较重的尾巴分布等帕累托。此外,除了海上混乱的回报外,还据报道,广义的帕累托分布最适合萨博飞机的雷达 - 跨段(RCS)数据。因此,在雷达应用程序场景(如空中警告和控制系统(AWAC))中,当目标和杂物分布时,我们将检测问题作为两样本,帕累托与帕累托复合假设测试问题。我们通过证实二进制假设框架,而不是调整现有的自适应thestive-Thines持有CFAR检测器的常规方式来解决这个问题。因此,对于综合情况,考虑到帕累托分布的混乱的规模和形状参数不了解,我们基于广义的似然比检验(GLRT)统计来得出新的自适应阈值检测器。我们进一步表明,我们提出的自适应阈值检测器具有CFAR财产。我们提供了广泛的仿真结果,以证明拟议的检测器的性能。
After Pareto distribution has been validated for sea clutter returns in varied scenarios, some heuristics of adaptive-thresholding appeared in the literature for constant false alarm rate (CFAR) criteria. These schemes used the same adaptive-thresholding form that was originally derived for detecting Swerling-I (exponential) target in exponentially distributed clutter. Statistical procedures obtained under such idealistic assumptions would affect the detection performance when applied to newer target and clutter models, esp. heavy tail distributions like Pareto. Further, in addition to the sea clutter returns, it has also been reported that Generalized Pareto distribution fits best for the measured Radar-cross-section (RCS) data of a SAAB aircraft. Therefore, in Radar application scenarios like Airborne Warning and Control System (AWACS), when both the target and clutter are Pareto distributed, we pose the detection problem as a two-sample, Pareto vs. Pareto composite hypothesis testing problem. We address this problem by corroborating the binary hypothesis framework instead of the conventional way of tweaking the existing adaptive-thresholding CFAR detector. Whereby, for the composite case, considering no knowledge of both scale and shape parameters of Pareto distributed clutter, we derive the new adaptive-thresholding detector based on the generalized likelihood ratio test (GLRT) statistic. We further show that our proposed adaptive-thresholding detector has a CFAR property. We provide extensive simulation results to demonstrate the performance of the proposed detector.