论文标题

为自闭症儿童的长期,家庭社会辅助机器人干预进行建模

Modeling Engagement in Long-Term, In-Home Socially Assistive Robot Interventions for Children with Autism Spectrum Disorders

论文作者

Jain, Shomik, Thiagarajan, Balasubramanian, Shi, Zhonghao, Clabaugh, Caitlyn, Matarić, Maja J.

论文摘要

社会辅助机器人技术(SAR)具有为自闭症谱系障碍儿童(ASD)提供可访问,负担得起和个性化的治疗干预措施的巨大潜力。但是,人类机器人互动(HRI)方法的自主识别和响应行为提示的能力仍然有限,尤其是在非典型用户和日常设置中。这项工作应用了有监督的机器学习算法,以在长期为有ASD儿童的长期内部SAR干预措施的背景下对用户参与度进行建模。具体而言,我们为每个用户提供两种类型的参与模型:(i)对来自不同用户的数据培训的广义模型; (ii)在用户数据的早期子集上训练的个性化模型。尽管在用户,会议和参与状态之间观察到的数据差异很大,但这些模型用于事后二进制二进制二进制分类的精度(AUROC)。此外,模型预测中的时间模式可用于在适当的时间可靠地启动重新参与措施。这些结果证明了在长期,现实世界中的HRI设置中,认识和对用户脱离接触的反应的可行性和挑战。这项工作的贡献还为参与和个性化的HRI设计,尤其是对于ASD社区的设计。

Socially assistive robotics (SAR) has great potential to provide accessible, affordable, and personalized therapeutic interventions for children with autism spectrum disorders (ASD). However, human-robot interaction (HRI) methods are still limited in their ability to autonomously recognize and respond to behavioral cues, especially in atypical users and everyday settings. This work applies supervised machine learning algorithms to model user engagement in the context of long-term, in-home SAR interventions for children with ASD. Specifically, we present two types of engagement models for each user: (i) generalized models trained on data from different users; and (ii) individualized models trained on an early subset of the user's data. The models achieved approximately 90% accuracy (AUROC) for post hoc binary classification of engagement, despite the high variance in data observed across users, sessions, and engagement states. Moreover, temporal patterns in model predictions could be used to reliably initiate re-engagement actions at appropriate times. These results validate the feasibility and challenges of recognition and response to user disengagement in long-term, real-world HRI settings. The contributions of this work also inform the design of engaging and personalized HRI, especially for the ASD community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源