论文标题

带有大气光蒸发的行星演化I.蒸发谷的分析推导和数值研究,以及从超产星到亚纽马的过渡

Planetary evolution with atmospheric photoevaporation I. Analytical derivation and numerical study of the evaporation valley and transition from super-Earths to sub-Neptunes

论文作者

Mordasini, Christoph

论文摘要

在开普勒数据中揭示了一个耗尽的区域,该区域将较小的超级矿物与较大的亚北极区分开。这可以解释为由大气逃生引起的,有和没有H/H/H/HE的行星之间的蒸发谷。首先,我们对H/HA/HE经过逃生的近距离质量行星的演变进行数值模拟。其次,我们为山谷基因座开发了一个分析模型。我们发现,在给定的轨道距离下,由最大的core $ r _ {\ rm b} $的半径量化的山谷底部仅弱取决于形成后H/HE质量。原因是高初始h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h的质量较低,但行星密度也较低,损失增加。关于恒星$ l _ {\ rm xuv} $,$ r _ {\ rm b} $ scales as $ l _ {\ rm xuv}^{0.135} $。相同的弱依赖性适用于效率因子$ \ varepsilon $的蒸发。如数值和分析上所示,$ r _ {\ rm b} $随着轨道周期$ p $的函数而变化,对于常数$ \ varepsilon $作为$ p^{ - 2 p _ {\ rm c}/3}/3} \ y y $ m \ m \ propto rm^rm^rm固体核心的关系。 $ r _ {\ rm b} $在10天的轨道上大约是1.7 $ r _ {\ oplus} $,用于地球状成分,随着冰质量分数的线性增加。通过分析模型很好地解释了数值结果,如果行星吸收的恒星XUV辐照的时间积分大于核心重力潜能中包膜的结合能,则发生完全蒸发。对原始质量的弱依赖性,$ l _ {\ rm Xuv} $和$ \ varepsilon $解释了为什么在观察山谷上可见,以及为什么理论上模型找到相似的结果。同时,鉴于$ l _ {\ rm Xuv} $的大量观察到的扩散,对其的依赖仍然足够强大,可以解释为什么山谷不是完全空的。

Observations have revealed in the Kepler data a depleted region separating smaller super-Earths from larger sub-Neptunes. This can be explained as an evaporation valley between planets with and without H/He that is caused by atmospheric escape. First, we conduct numerical simulations of the evolution of close-in low-mass planets with H/He undergoing escape. Second, we develop an analytical model for the valley locus. We find that the bottom of the valley quantified by the radius of the largest stripped core $R_{\rm b}$ at a given orbital distance depends only weakly on post-formation H/He mass. The reason is that a high initial H/He mass means that there is more gas to evaporate, but also that the planet density is lower, increasing loss. Regarding stellar $L_{\rm XUV}$, $R_{\rm b}$ scales as $L_{\rm XUV}^{0.135}$. The same weak dependency applies to the efficiency factor $\varepsilon$ of energy-limited evaporation. As found numerically and analytically, $R_{\rm b}$ varies as function of orbital period $P$ for a constant $\varepsilon$ as $P^{-2 p_{\rm c}/3}\approx P^{-0.18}$ where $M \propto R^{p_{\rm c}}$ is the mass-radius relation of solid cores. $R_{\rm b}$ is about 1.7 $R_{\oplus}$ at a 10-day orbit for an Earth-like composition, increasing linearly with ice mass fraction. The numerical results are explained very well with the analytical model where complete evaporation occurs if the temporal integral over the stellar XUV irradiation absorbed by the planet is larger than binding energy of the envelope in the gravitational potential of the core. The weak dependency on primordial H/He mass, $L_{\rm XUV}$ and $\varepsilon$ explains why observationally the valley is visible, and why theoretically models find similar results. At the same time, given the large observed spread of $L_{\rm XUV}$, the dependency on it is still strong enough to explain why the valley is not completely empty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源