论文标题

使用有限体积和不连续的Galerkin的辐射传输方程的混合求解器

Hybrid Solver for the Radiative Transport Equation Using Finite Volume and Discontinuous Galerkin

论文作者

Heningburg, Vincent, Hauck, Cory D.

论文摘要

我们为辐射传输方程式提出了一个混合空间离散化,该方程结合了二阶不连续的Galerkin(DG)方法和二阶有限体积(FV)方法。该策略依赖于以前已用于结合不同角度离散化的简单操作员分裂。与带有前风通量的标准FV方法不同,混合方法能够准确模拟散射主导的状态中的问题。但是,与统一的DG离散化相比,它需要更少的内存并产生更快的计算时间。另外,基础分裂可以自然地在空间和角度杂交。给出数值结果以证明在离散的纵向离散和笛卡尔空间网格的背景下,混合方法的效率。

We propose a hybrid spatial discretization for the radiative transport equation that combines a second-order discontinuous Galerkin (DG) method and a second-order finite volume (FV) method. The strategy relies on a simple operator splitting that has been used previously to combine different angular discretizations. Unlike standard FV methods with upwind fluxes, the hybrid approach is able to accurately simulate problems in scattering dominated regimes. However, it requires less memory and yields a faster computational time than a uniform DG discretization. In addition, the underlying splitting allows naturally for hybridization in both space and angle. Numerical results are given to demonstrate the efficiency of the hybrid approach in the context of discrete ordinate angular discretizations and Cartesian spatial grids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源