论文标题
重复的游戏高速公路车道更换模型
A Repeated Game Freeway Lane Changing Model
论文作者
论文摘要
车道变化是复杂的安全性和关键驾驶员行动。大多数车道更换的模型仅从合并驾驶员的角度来处理改变车道的操作,因此忽略了驾驶员的交互。为了克服这一缺点,我们开发了游戏理论决策模型,并在高速公路上使用经验合并数据来验证该模型。具体来说,本文通过使用更新的收益功能在上一篇论文中推进了我们重复的游戏模型。使用NGSIM经验数据的验证结果表明,与以前的工作相比,开发的游戏理论模型提供了更好的预测准确性,大约86%的时间进行了正确的预测。此外,灵敏度分析证明了模型对各种因素变化的合理性和敏感性。为了提供重复游戏方法的好处的证据,考虑到以前的决策结果,使用基于代理的仿真模型进行了案例研究。在模拟实际的高速公路合并行为时,提议的重复游戏模型可产生优于单次游戏模型的性能。最后,可以使用人类驾驶员之间的集体决策模型来制定自动化的车辆驾驶策略。
Lane changes are complex safety and throughput critical driver actions. Most lane changing models deal with lane-changing maneuvers solely from the merging driver's standpoint and thus ignore driver interaction. To overcome this shortcoming, we develop a game-theoretical decision-making model and validate the model using empirical merging maneuver data at a freeway on-ramp. Specifically, this paper advances our repeated game model in a previous paper by using updated payoff functions. Validation results using the NGSIM empirical data show that the developed game-theoretical model provides better prediction accuracy compared to previous work, with correct predictions approximately 86 percent of the time. In addition, a sensitivity analysis demonstrates the rationality and sensitivity of the model to variations in various factors. To provide evidence of the benefits of the repeated game approach, which takes into account previous decision-making results, a case study is conducted using an agent-based simulation model. The proposed repeated game model produces superior performance to a one-shot game model, when simulating actual freeway merging behaviors. Finally, this lane change model, which captures the collective decision-making between human drivers, can be used to develop automated vehicle driving strategies.