论文标题

一类离散扩散SIR流行模型的行驶波解决方案

Traveling wave solutions for a class of discrete diffusive SIR epidemic model

论文作者

Zhang, Ran, Wang, Jinliang, Liu, Shengqiang

论文摘要

本文涉及一类离散扩散流行模型的行驶波解(TWS)的存在和不存在的条件。我们发现,TWS的存在取决于所谓的基本繁殖数和关键波速度:当基本复制号r0大于1时,存在一个临界波速度C*> 0,因此对于每个C> = C*,该系统承认C <c*对系统而言,对于系统而言,对于系统而言,则不存在非琐事。另外,通过构建合适的Lyapunov功能并采用Lebesgue主导的收敛定理来获得TWS的边界渐近行为。最后,我们将结果应用于两个离散的扩散流行模型,以验证TWS的存在和不存在。

This paper is concerned with the conditions of existence and nonexistence of traveling wave solutions (TWS) for a class of discrete diffusive epidemic models. We find that the existence of TWS is determined by the so-called basic reproduction number and the critical wave speed: When the basic reproduction number R0 greater than 1, there exists a critical wave speed c* > 0, such that for each c >= c * the system admits a nontrivial TWS and for c < c* there exists no nontrivial TWS for the system. In addition, the boundary asymptotic behaviour of TWS is obtained by constructing a suitable Lyapunov functional and employing Lebesgue dominated convergence theorem. Finally, we apply our results to two discrete diffusive epidemic models to verify the existence and nonexistence of TWS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源