论文标题
1+1个DIRAC振荡器和Jaynes-Cummings模型中的动力代数
Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes-Cummings Model
论文作者
论文摘要
我们通过将旋转对称性的概念扩展到非共同情况来研究一维dirac振荡器的代数结构。 发现一个SO(4)代数连接了Dirac振荡器的本征态,其中cartan subergebra的两个要素是保守的数量。 Jaynes模型也获得了类似的结果。
We study the algebraic structure of the one-dimensional Dirac oscillator by extending the concept of spin symmetry to a noncommutative case. An SO(4) algebra is found connecting the eigenstates of the Dirac oscillator, in which the two elements of Cartan subalgebra are conserved quantities. Similar results are obtained in the Jaynes--Cummings model.